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Abstract

Video super-resolution, which aims at producing a high-
resolution video from its corresponding low-resolution ver-
sion, has recently drawn increasing attention. In this work,
we propose a novel method that can effectively incorpo-
rate temporal information in a hierarchical way. The input
sequence is divided into several groups, with each one cor-
responding to a kind of frame rate. These groups provide
complementary information to recover missing details in the
reference frame, which is further integrated with an attention
module and a deep intra-group fusion module. In addition,
a fast spatial alignment is proposed to handle videos with
large motion. Extensive results demonstrate the capability of
the proposed model in handling videos with various motion.
It achieves favorable performance against state-of-the-art
methods on several benchmark datasets. Code is available
at https://github.com/junpan19/VSR_TGA.

1. Introduction
Super-resolution aims at producing high-resolution (HR)

images from the corresponding low-resolution (LR) ones by
filling in missing details. For single image super-resolution,
an HR image is estimated by exploring natural image pri-
ors and self-similarity within the image. For video super-
resolution, both spatial information across positions and
temporal information across frames can be used to enhance
details for an LR frame. Recently the task of video super-
resolution has drawn much attention in both the research and
industrial communities. For example, video super-resolution
is required when videos recorded for surveillance are zoomed
in to recognize a person’s identity or a car’s license, or when
videos are projected to a high definition display device for
visually pleasant watching.

†The work was done in Noah’s Ark Lab, Huawei Technologies.
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Figure 1. VSR results for the Calender clip in Vid4 [1]. Our method
produces result with more details (cyan arrow), and fewer artifacts
(red arrow) than DUF [8] and the recent proprosed EDVR [28].

Most video super-resolution methods [9, 1, 25, 29, 17]
adopt the following pipeline: motion estimation, motion
compensation, fusion and upsampling. They estimate optical
flow between a reference frame and other frames in either an
offline or online manner, and then align all other frames to
the reference with backward warping. However, this is not
optimal for video SR. Methods with explicit motion compen-
sation rely heavily on the accuracy of motion estimation. In-
accurate motion estimation and alignment, especially when
there is occlusion or complex motion, results in distortion
and errors, deteriorating the final super-resolution perfor-
mance. Besides, per-pixel motion estimation such as optical
flow often suffers a heavy computational load. Recently Jo et
al. [8] proposed the DUF method which implicitly utilizes
motion information among LR frames to recover HR frames
by means of dynamic upsampling filters. It is less influenced
by the accuracy of motion estimation but its performance
is limited by the size of the dynamic upsampling filters. In
addition, the temporal information integration process from
other frames to the reference frame is conducted without
explicitly taking the reference frame into consideration. This

https://github.com/junpan19/VSR_TGA


leads to ineffective information integration for border frames
in an input sequence.

In this work, we propose a novel deep neural network
which hierarchically utilizes motion information in an im-
plicit manner and is able to make full use of complementary
information across frames to recover missing details for the
reference frame. Instead of aligning all other frames to the
reference frame with optical flow or applying 3D convolu-
tion to the whole sequence,we propose to divide a sequence
into several groups and conduct information integration in
a hierarchical way, that is, first integrating information in
each group and then integrate information across groups.
The proposed grouping method produces groups of subse-
quences with different frame rates, which provide different
kinds of complementary information for the reference frame.
Such different complementary information is modeled with
an attention module and the groups are deeply fused with
a 3D dense block and a 2D dense block to generate a high-
resolution version of the reference frame. Overall, the pro-
posed method follows a hierarchical manner. It is able to
handle various kinds of motion and adaptively borrow infor-
mation from groups of different frame rates. For example,
if an object is occluded in one frame, the model would pay
more attention to frames in which the object is not occluded.

However, the capability of the proposed method is still
limited in dealing with video sequences of large motion
since the receptive field is finite. To address this issue, a fast
homography based method is proposed for rough motion
compensation among frames. The resulting warped frames
are not perfectly aligned but they suffer less distortion ar-
tifacts compared to existing optical flow based methods.
Appearance difference among frames is indeed reduced such
that the proposed neural network model can focus on object
motion and produce better super-resolution result.

The proposed method is evaluated on several video super-
resolution benchmarks and achieves state-of-the-art perfor-
mance. We conduct further analysis to demonstrate its effec-
tiveness.

To sum up, we make the following contributions:

• We propose a novel neural network which efficiently
fuses spatio-temporal information through frame-rate-
aware groups in a hierarchical manner.

• We introduce a fast spatial alignment method to handle
videos with large motion.

• The proposed method achieves state-of-the-art perfor-
mance on two popular VSR benchmarks.

2. Related Work
2.1. Single Image Super Resolution

Single image super-resolution (SISR) has benefited
greatly from progress in deep learning. Dong [2] first pro-

posed to use a three-layer CNN for SISR and showed im-
pressive potential in super-resolving LR images. New ar-
chitectures have been designed since then, including a very
deep CNN with residual connections [10], a recursive ar-
chitecture with skip-connections [11], a architecture with a
sub-pixel layer and multi-channel output to directly work
on LR images as input [23]. More recent networks, includ-
ing EDSR [15], RDN [36], DBPN [4], RCAN [35], outper-
formed previous works by a large margin when trained on
the novel large dataset DIV2K [27]. More discussions can
be found in the recent survey [31].

2.2. Video Super Resolution

Video super resolution relies heavily on temporal align-
ment, either explicitly or implicitly, to make use of com-
plementary information from neighboring low-resolution
frames. VESCPN [1] is the first end-to-end video SR
method that jointly trains optical flow estimation and spatial-
temporal networks. SPMC [25] proposed a new sub-pixel
motion compensation layer for inter-frame motion alignment,
and achieved motion compensation and upsampling simulta-
neously. [29] proposed to jointly train the motion analysis
and video super resolution in an end-to-end manner through
a proposed task-oriented flow. [5] proposed to use a recur-
rent encoder-decoder module to exploit spatial and temporal
information, where explicit inter-frame motion were esti-
mated. Methods using implicit temporal alignment showed
superior performance on several benchmarks. [12] exploited
the 3DCNN’s spatial-temporal feature representation capa-
bility to avoid motion alignment, and stacked several 3D
convolutional layers for video SR. [8] proposed to use 3D
convolutional layers to compute dynamic filters [7] for im-
plicit motion compensation and upsampling. Instead of im-
age level motion alignment, TDAN [26] and EDVR [28]
worked in the feature level motion alignment. TDAN [26]
proposed a temporal deformable alignment module to align
features of different frames for better performance. EDVR
[28] extended TDAN in two aspects by 1) using deformable
alignment in a coarse-to-fine manner and 2) proposing a
new temporal and spatial attention attention fusion module,
instead of naively concatenating the aligned LR frames as
TDAN does.

The work most related with ours is [17], which also re-
organized the input frames to several groups. However,
in [17], groups are composed of different number of in-
put frames. In addition, that method generates an super-
resolution result for each group and computes an attention
map to combine these super-resolution results, which takes
much computation and is not very effective. Our method
divides input frames into several groups based on frame rate
and effectively integrates temporal information in a hierar-
chical way.
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Figure 2. The proposed method with temporal group attention.

3. Methodology
3.1. Overview

Given a consecutive low-resolution video frame sequence
consisting of one reference frame ILt and 2N neighboring
frames {ILt−N : ILt−1, I

L
t+1 : ILt+N}, the goal of VSR is to

reconstruct a high-resolution version of reference frame Ît
by fully utilizing the spatio-temporal information across the
sequence. The overall pipeline of the proposed method is
shown in Fig. 2. It’s a generic framework suitable for pro-
cessing sequences of different input lengths. Take seven
frames {IL1 , IL2 , ..., IL7 } for example, we denote the middle
frame IL4 as the reference frame, and the other frames as
neighboring ones. The seven input frames are divided into
three groups based on decoupled motion, with each one
representing a certain kind of frame rate. An intra-group
fusion module with shared weights is proposed to extract
and fuse spatio-temporal information within each group. In-
formation across groups is further integrated through an
attention-based inter-group fusion module. Finally, the out-
put high-resolution frame Î4 is generated by adding the net-
work produced residual map and the bicubic upsampling of
the input reference frame. Additionally, a fast spatial align-
memt module is proposed to further help deal with video
sequences of large motion.

3.2. Temporal Group Attention

The crucial problem with implicit motion compensation
lies on the inefficient fusion of temporal fusion in neigh-
boring frames. In [8], input frames are stacked along the
temporal axis and 3D convolutions are directly applied to
the stacked frames. Such distant neighboring frames are
not explicitly guided by the reference frame, resulting in
insufficient information fusion, and this impedes the refer-
ence frame from borrowing information from distant frames.

To address this issue, we propose to split neighboring 2N
frames into N groups based on their temporal distances from
the reference frame. Later, spatial-temporal information is
extracted and fused in a hierarchical manner: an intra-group
fusion module integrates information within each group, fol-
lowed by an inter-group fusion module which effectively
handles group-wise features.

Temporal Grouping. In contrast to the previous work,
the neighboring 2N frames are split to N groups based on
the temporal distance to the reference frame. The original
sequence is reordered as {G1, ..., Gn}, n ∈ [1 : N ], where
Gn = {ILt−n, ILt , ILt+n} is a subsequence consisting of a
former frame ILt−n, the reference frame ILt and a latter frame
ILt+n. Notice that the reference frame appears in each group.
It is noteworthy that our method can be easily generalized
to arbitrary frames as input. The grouping allows explicit
and efficient integration of neighboring frames with different
temporal distance for two reasons: 1) The contributions of
neighboring frames in different temporal distances are not
equal, especially for frames with large deformation, occlu-
sion and motion blur. When a region in one group is (for
example by occlusion), the missing information can be re-
covered by other groups. That is, information of different
groups complements each other. 2) The reference frame in
each group guides the model to extract beneficial informa-
tion from neighboring frames, allowing efficient information
extraction and fusion.

Intra-group Fusion. For each group, an intra-group fu-
sion module is deployed for feature extraction and fusion
within each group. The module consists of three parts. The
first part contains three units as the spatial features extractor,
where each unit is composed of a 3× 3 convolutional layer
followed by a batch normalization (BN) [6] and a ReLU [3].
All convolutional layers are equipped with dilation rate to
model the motion level associated with a group. The dilation



rate is determined according to the frame rate in each group
with the assumption that distant group has large motion and
near group has small motion. Subsequently, for the second
part, an additional 3D convolutional layer with 3 × 3 × 3
kernel is used to perform spatio-temporal feature fusion.
Finally, group-wise features F g

n are produced by applying
eighteen 2D units in the 2D dense block to deeply integrate
information within each group.

The weights of the intra-group fusion module are shared
for each group for efficiency. The effectiveness of the pro-
posed temporal grouping are presented in Sec.4.3.

Inter-group Fusion with Temporal Attention. To bet-
ter integrate features from different groups, a temporal at-
tention module is introduced. Temporal attention has been
widely used in video-related tasks [24, 33, 34, 30]. In this
work, we show that temporal attention also benefits the task
of VSR by enabling the model to pay different attention
across time. In the previous section, a frame sequence is
categorized into groups according to different frame rates.
These groups contain complementary information. Usually,
a group with slow frame rate is more informative because
the neighboring frames are more similar to the reference one.
Simultaneously, groups with fast frame rate may also capture
information about some fine details which are missing in the
nearby frames. Hence, temporal attention works as a guid-
ance to efficiently integrate features from different temporal
interval groups.
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Figure 3. Computation of group attention maps. F a
n corresponds to

group-wise features while Mn is the attention mask.

For each group, a one-channel feature map F a
n is com-

puted after applying a 3×3 convolutional layer on top of the
corresponding feature maps F g

n . They are further concate-
nated and a softmax function along temporal axis is applied
to each position across channels to compute attention maps,
as shown in Fig. 3. Each group’s intermediate map is con-
catenated and the attention maps M(x, y) are computed by
applying softmax along temporal axis, as shown in Fig. 3.

Mn(x, y)j =
eF

a
n (x,y)j∑N

i=1 e
Fa

i (x,y)j
(1)

Attention weighted feature for each group F̃ g
n is calculated

as:
F̃ g
n =Mn � F g

n , n ∈ [1 : N ] (2)

where Mn(x, y)j represents the weight of the temporal
group attention mask at location (x, y)j . F g

n represents the
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Figure 4. Structure of the inter-group fusion module.

group-wise features produced by intra-group fusion module.
‘�’ denotes element-wise multiplication.

The goal of the inter-group fusion module is to aggregate
information across different temporal groups and produce
a high-resolution residual map. In order to make full use
of attention weighted feature over temporal groups, we first
aggregate those features by concatenating them along the
temporal axis and feed it into a 3D dense block. Then a
2D dense block is on top for further fusion, as shown in
Fig. 4. 3D unit has the same structure as 2D unit which is
used in intra-group fusion module. A convolution layer with
1× 3× 3 kernel is inserted in the end of the 3D dense block
to reduce channels. The design of 2D and 3D dense blocks
are inspired by RDN [36] and DUF [8], which is modified
in an efficient way to our pipeline.

Finally, similar to several single image super-resolution
methods, sufficiently aggregated features are upsampled with
a depth-to-space operation [23] to produce high-resolution
residual map Rt. The high-resolution reconstruction Ît is
computed as the sum of the residual map Rt and a bicubic
upsampled reference image I↑t .

3.3. Fast Spatial Alignment

Although the proposed model is able to effectively use
temporal information across frames, it has difficulty in deal-
ing with videos with large motion. To improve the perfor-
mance of the proposed model in case of large motion, we
further propose a fast spatial alignment module. Different
from previous methods [19, 1, 29] which either use offline
optical flow or an integrated optical flow network for motion
estimation and compensation, we estimate homography be-
tween every two consecutive frames and warp neighboring
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frames to the reference frame, which can be shown in Fig. 5.
Interest points could be detected by feature detectors such
as SIFT [18] or ORB [21], and point correspondences are
computed to estimate homography. Homography from frame
A and C can be computed as a product of the homography
from A to B and the one from B to C:

HA→C = HA→B ·HB→C (3)

For a homography, the inverse transform can be represented
by the inverse of the matrix:

HB→A = H−1A→B (4)

Since optical flow is computed for each pixel, imperfect
optical flow estimation would introduce much unexpected
pixel-level distortion into warping, destroying structure in
original images. In addition, most optical-flow-based meth-
ods [14, 1, 25, 29] estimate optical flow between each neigh-
boring frame and the reference frame independently, which
would bring a lot of redundant computation when super-
resolving a long sequence. In our method, since homography
transformation is a global, it keeps the structure better and
introduces little artifact. In addition, the associative compo-
sition nature of homography allows to decompose a homog-
raphy between two frames into a product of homographies

between every two consecutive ones in that interval, which
avoids redundant computation and speeds up pre-alignment.
Note that the pre-alignment here does not need to be perfect.
As long as it does not introduce much pixel-level distortion,
the proposed VSR network can give good performance. We
also introduce exit mechanism for pre-alignment for robust-
ness. That is, in case that few interest points are detected
or there is much difference between a frame and the result
after applying H and H−1, the frames are kept as they are
without any pre-alignment. In other words, a conservative
strategy is adopt in pre-alignment procedure.

4. Experiments

To evaluate the proposed method, a series of experiments
are conducted and results are compared with existing state-
of-the-art methods. Subsequently, a detailed ablation study
is conducted to analyze the effectiveness of the proposed
temporal grouping, group attention and fast spatial alignment.
Results demonstrate the effectiveness and superiority of the
proposed method.



Method # Frames Calendar (Y) City (Y) Foliage (Y) Walk (Y) Average (Y) Average (RGB)

Bicubic 1 18.83/0.4936 23.84/0.5234 21.52/0.4438 23.01/0.7096 21.80/0.5426 20.37/0.5106
SPMC † [25] 3 - - - - 25.52/0.76 -
Liu† [17] 5 21.61/ - 26.29/ - 24.99/ - 28.06/ - 25.23/ - -
TOFlow [29] 7 22.29/0.7273 26.79/0.7446 25.31/0.7118 29.02/0.8799 25.84/0.7659 24.39/0.7438
FRVSR †[22] recurrent - - - - 26.69/0.822 -
DUF-52L [8] 7 24.17/0.8161 28.05/0.8235 26.42/0.7758 30.91/ 0.9165 27.38/0.8329 25.91/0.8166
RBPN [5] 7 24.02/0.8088 27.83/0.8045 26.21/0.7579 30.62/0.9111 27.17/0.8205 25.65/0.7997
EDVR-L† [28] 7 24.05/0.8147 28.00/0.8122 26.34/0.7635 31.02/0.9152 27.35/0.8264 25.83/0.8077
PFNL† [32] 7 24.37/0.8246 28.09/0.8385 26.51/0.7768 30.65/0.9135 27.40/0.8384 -
TGA (Ours) 7 24.47/0.8286 28.37/0.8419 26.59/0.7793 30.96/0.9181 27.59/0.8419 26.10/0.8254

Table 1. Quantitative comparison (PSNR(dB) and SSIM) on Vid4 for 4× video super-resolution. Red text indicates the best and blue text
indicates the second best performance. Y and RGB indicate the luminance and RGB channels, respectively. ‘†’ means the values are taken
from original publications or calculated by provided models. Best view in color.

Bicubic TOFlow [29] DUF-52L [8] RBPN [5] EDVR-L† [28] TGA(Ours)

# Param. N/A 1.4M 5.8M 12.1M 20.6M 5.8M
FLOPs N/A 0.27T 0.20T 3.08T 0.30T 0.07T
Y Channel 31.30/0.8687 34.62/0.9212 36.87/0.9447 37.20/0.9458 37.61/0.9489 37.59/0.9516
RGB Channels 29.77/0.8490 32.78/0.9040 34.96/0.9313 35.39/0.9340 35.79/0.9374 35.57/0.9387

Table 2. Quantitative comparison (PSNR(dB) and SSIM) on Vimeo-90K-T for 4× video super-resolution. Red text indicaktes the best result
and blue text indicates the second best. FLOPs are calculated on an LR image of size 112×64. ‘†’ means the values are taken from original
publications. Note that the deformation convolution and offline pre-alignment are not included in calculating FLOPs. Best view in color.

4.1. Implementation Details

Dataset. Similar to [5, 29], we adopt Vimeo-90k [29] as
our training set, which is a widely used for the task of video
super-resolution. We sample regions with spatial resolution
256×256 from high resolution video clips. Similar to [8,
29, 32] low-resolution patches of 64 × 64 are generated
by applying a Gaussian blur with a standard deviation of
σ = 1.6 and 4× downsampling. We evaluate the proposed
method on two popular benchmarks: Vid4 [16] and Vimeo-
90K-T[29]. Vid4 consists of four scenes with various motion
and occlusion. Vimeo-90K-T contains about 7k high-quality
frames and diverse motion types.

Implementation details. In the intra-group fusion mod-
ule, three 2D units are used for spatial features extractor,
which is followed by a 3D convolution and eighteen 2D
units in the 2D dense block to integrate information within
each group. For the inter-group fusion module, we use four
3D units in the 3D dense block and twenty-one 2D units in
the 2D dense block. The channel size is set to 16 for con-
volutional layers in the 2D and 3D units. Unless specified
otherwise, our network takes seven low resolution frames as
input. The model is supervised by pixel-wise L1 loss and
optimized with Adam [13] optimizer in which β1 = 0.9 and
β2 = 0.999. Weight decay is set to 5 × 10−4 during train-
ing. The learning rate is initially set to 2 × 10−3 and later
down-scaled by a factor of 0.1 every 10 epoches until 30
epochs. The size of mini-batch is set to 64. The training data
is augmented by flipping and rotating with a probability of

0.5. All experiments are conducted on a server with Python
3.6.4, PyTorch 1.1 and Nvidia Tesla V100 GPUs.

4.2. Comparison with State-of-the-arts

We compare the proposed method with six state-of-the-
art VSR approaches, including TOFlow [29], SPMC [25],
Liu [17], DUF [8], RBPN [5], EDVR [28] and PFNL [32].
Both TOFlow and SPMC apply explicit pixel-level motion
compensation with optical flow estimation, while RBPN
uses pre-computed optical flow as additional input. DUF,
EDVR and PFNL conduct VSR with implicit motion com-
pensation. We carefully implement TOFlow and DUF on our
own, and rebuild RBPN and EDVR based on the publicly
available code. We reproduce the performance of most of
these methods as reported in the paper except for EDVR.
Tab. 1 and Tab. 2 give quantitative results of state-of-the-
art methods on Vid4 and Vimeo-90K-T, which are either
reported in the original papers or computed by us. In the
evaluation, we take all frames into account except for the
DUF method [8] which crop 8 pixels on four borders of each
frame since it suffer from severe border artifacts. In addition,
we also include the number of parameters and FLOPs for
most methods on an LR image of size 112 × 64 in Tab. 2.
On Vid4 test set, the proposed method achieves a result of
27.59dB PSNR in the Y channel and 26.10dB PSNR in RGB
channel, which outperforms other state-of-the-art methods
by a large margin. Qualitative result in Fig. 6 also validates
the superiority of the proposed method. Attributed to the
proposed temporal group attention, which is able to make



Figure 6. Qualitative comparison on the Vid4 for 4×SR. Zoom in for better visualization.

Figure 7. Qualitative comparison on the Vimeo-90K-T for 4×SR. Zoom in for better visualization.

TOFlow

DUF

RBPN

EDVR

GT

Ours

t
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Figure 8. Visualization of temporal consistency for calendar se-
quence. Temporal profile is produced by recording a single pixel
line (green line) spanning time and stacked vertically.

full use of complementary information among frames, our
model produces sharper edges and finer detailed texture than
other methods. In addition, we extract temporal profiles in
order to evaluate the performance on temporal consistency
in Fig.8. A temporal profile is produced by taking the same
horizontal row of pixels from consecutive frames and stack-
ing them vertically. The temporal profiles show that the

proposed method gives temporally consistent results, which
suffer less flickering artifacts than other approaches.

Vimeo-90K-T is a large and challenging dataset cov-
ering scenes with large motion and complicated illumina-
tion changes. The proposed method is compared with sev-
eral methods including TOFlow, DUF, RBPN and EDVR.
As shown in Tab. 2 and Fig. 7, the proposed method
also achieves very good performance on this challenging
dataset. It outperforms most state-of-the-art methods such as
TOFlow, DUF and RBPN by a large margin both in PSNR
and SSIM. The only exception is EDVR-L whose model size
and computation is about four times larger than our method.
In spite of this, our method is still rather comparable in
PSNR and a little better in SSIM.

4.3. Ablation Study

In this section, we conduct several ablation study on the
proposed temporal group attention and fast spatial alignment
to further demonstrate the effectiveness of our method.

Temporal Group Attention. First we experiment with
different ways of organizing the input sequence. One base-
line method is to simply stack input frames along temporal
axis and directly feed that to several 3D convolutional lay-
ers, similar to DUF [8]. Apart from our grouping method
{345, 246, 147}, we also experiment with other ways of



Model DUF-like {123, 345, 567} {345, 142, 647} {345, 246, 147}
TG? % ! ! !

Vid4 27.18/0.8258 27.47/0.8384 27.54/0.8409 27.59/0.8419
Vimeo-90K-T 37.06/0.9465 37.46/0.9487 37.51/0.9509 37.59/0.9516

Table 3. Ablation on: different grouping strategies.

grouping: {123, 345, 567} and {345, 142, 647}. As shown
in Tab. 3, DUF-like input performs worst among these meth-
ods. That illustrate that integrating temporal information in
a hierarchical manner is a more effective way in integrat-
ing information across frames. Both {345, 246, 147} and
{345, 142, 647} are better than {123, 345, 567}, which im-
plies the advantage of adding the reference frame in each
group. Having the reference in the group encourages the
model to extract complementary information that is missing
in the reference frame. Another 0.05dB improvement of
our grouping method {345, 246, 147} could be attributed to
the effectiveness of motion-based grouping in employing
temporal information.

In addition, we also evaluate a model which removes the
attention module from our whole model. As shown in Tab. 4,
this model performs a little worse than our full model. We
also train our full model with a sequence of 5 frames as
input. The result in Tab. 4 shows that the proposed method
can effectively borrow information from additional frames.
We notice that the proposed method outperforms DUF even
with 2 fewer frames in the input. In addition, we conduct
a toy experiment where a part of a neighboring frame is
occluded and visualize the maps of temporal group attention.
As shown in Fig. 9, the model does attempt to borrow more
information from other groups when a group can not provide
complementary information to recover the details of that
region.

Model Model 1 Model 2 Model 3

# Frames 7 5 7
GA? % ! !

Vid4 27.51/0.8394 27.39/0.8337 27.59/0.8419
Vimeo-90K-T 37.43/0.9506 37.34/0.9491 37.59/0.9516

Table 4. Ablations on: group attention (GA) modules and the influ-
ence of the different input frames in our hierarchical information
aggregation way.

Fast Spatial Alignment. To investigate the effectiveness
and efficiency of the proposed fast spatial alignment, we
equip the proposed TGA model with three different pre-
alignment strategies: TGA without alignment, TGA with
PyFlow [20], and TGA with FSA. The evaluation is con-
ducted on Vimeo-90K-T where there is various motion in
the video clips. Tab. 5 shows the performance of TGA with
pyflow is significantly inferior than the TGA model without
any pre-alignment. It implies that imperfect optical flow
estimation leads to inaccurate motion compensation such as
distortion on the regions with large motion (see the green

Pre-alignment w/o w/ PyFlow [20] w/ FSA

PSNR/SSIM 37.32/0.9482 35.14/0.9222 37.59/0.9516
Time (CPU+GPU) 0+70.8ms 760.2+70.8ms 18.6+70.8ms

Table 5. Ablation on: the effectiveness and efficiency of the fast
spatial alignment module. The elapsed time are calculated on
processing a seven frame sequence with LR size of 112×64.

Figure 9. Visualization of group attention masks under occlusion
settings. G1, G2 and G3 denote three groups.

box in Fig. 5), which confuses the model during training
and hurts the final video super-resolution performance. In
contrast, the proposed FSA boosts the performance of the
TGA model from 37.32dB to 37.59dB. This demonstrates
that the proposed FSA, which although does not perfectly
align frames, is capable of reducing appearance differences
among frames in a proper way. We also compute time cost of
this module on Vimeo-90K-T dataset and present it in Tab. 5.
Our FSA method is much more efficient than the PyFlow
method. Note that since every sequence in Vimeo-90K-T
only contains 7 frames, the advantage of FSA in reducing
redundant computation is not fully exployed. Both PyFlow
and our FSA are run on CPU, and FSA could be further
accelerated with optimized GPU implementation.

5. Conclusion

In this work, we proposed a novel deep neural network
which hierarchically integrates temporal information in an
implicit manner. To effectively leverage complementary in-
formation across frames, the input sequence is reorganized
into several groups of subsequences with different frame
rates. The grouping allows to extract spatio-temporal infor-
mation in a hierarchical manner, which is followed by an
intra-group fusion module and inter-group fusion module.
The intra-group fusion module extracts features within each
group, while the inter-group fusion module borrows com-
plementary information adaptively from different groups.
Furthermore, an fast spatial alignment is proposed to deal
with videos in case of large motion. The proposed method is
able to reconstruct high-quality HR frames and also main-
tain the temporal consistency. Extensive experiments on
several benchmark datasets demonstrate the effectiveness of
the proposed method.
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