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Abstract

Recently unsupervised domain adaptation for the seman-
tic segmentation task has become more and more popular
due to high-cost of pixel-level annotation on real-world im-
ages. However, most domain adaptation methods are only
restricted to single-source-single-target pair, and can not be
directly extended to multiple target domains. In this work,
we propose a collaborative learning framework to achieve
unsupervised multi-target domain adaptation. An unsuper-
vised domain adaptation expert model is first trained for
each source-target pair and is further encouraged to col-
laborate with each other through a bridge built between
different target domains. These expert models are further
improved by adding the regularization of making the con-
sistent pixel-wise prediction for each sample with the same
structured context. To obtain a single model that works
across multiple target domains, we propose to simultane-
ously learn a student model which is trained to not only
imitate the output of each expert on the corresponding tar-
get domain, but also to pull different expert close to each
other with regularization on their weights. Extensive ex-
periments demonstrate that the proposed method can ef-
fectively exploit rich structured information contained in
both labeled source domain and multiple unlabeled target
domains. Not only does it perform well across multiple
target domains but also performs favorably against state-of-
the-art unsupervised domain adaptation methods specially
trained on a single source-target pair. Code is available at
https://github.com/junpan19/MTDA.

†The work was done in Noah’s Ark Lab, Huawei Technologies.
∗Corresponding author

1. Introduction

Semantic segmentation aims at interpreting an image by
assigning each pixel to a semantic class [33, 6, 7, 55, 63].
Recently, semantic segmentation has achieved remarkable
progress and is widely applied to intelligent systems such as
autonomous driving, human-computer interaction and other
low-level vision tasks [22, 21, 23]. Its success is mainly
attributed to the supervised learning over large amounts
of annotated data. However, human efforts on pixel-level
annotations are expensive, which substantially limits the
scalability of segmentation models. With large amounts of
low-cost and diverse synthetic data simulated with game
engines available, unsupervised domain adaptation (UDA)
draws much attention to adapt the model learned on synthetic
data to real-world data. Unsupervised domain adaptation
methods [28, 51, 59, 34, 4, 61, 36, 37] alleviate the issue
of domain mismatch by training a model on both labeled
source domain and unlabeled target domain.

However, the setting of traditional unsupervised domain
adaptation in semantic segmentation is usually restricted to
single-source-single-target pair, as shown in Figure 1 (a).
The learned model only works for a single target domain
and can not be easily extended to multiple target domains,
that is, multi-target domain adaptation (MTDA). With this
setting, it is expected to learn a single model that is able to
make full use of data from a single labeled source domain
and multiple unlabeled target domains and performs well
on multiple target domains simultaneously. This setting
has great value in real-world applications. For example, in
autonomous driving it is expected to have a model work in
various environments with different lighting, weather and
cityscapes. It is difficult to collect annotated data for such
different environments but is easy to have large amounts of
unlabeled data.
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Figure 1. Comparison between the setting of single-target domain
adaptation (STDA) and multi-target domain adaptation (MTDA).
(a) Multiple STDA models with each one corresponding to a single
target domain. (b) A single MTDA model working across multiple
target domains.

There have been several works on MTDA [14, 40, 56],
however, most of them focus on the classification task. Few
works are developed to address the semantic segmentation
task under the setting of multi-target domain adaptation. To
the best of our knowledge, this is the first work to explore
multi-target domain adaptation for semantic segmentation.
The main challenge with this task are two folds: (1) lack of
pixel-wise supervised information in multiple target domains
poses great difficulty in mining inherent and transferable
knowledge; (2) it is difficult to have a single model that
works well on multiple target domains. There are two intu-
itive ways of extending the pair-wise DA to work on multiple
target domains: (1) training multiple models individually for
each target domain and (2) training a single model on com-
bined data from multiple target domains. However, directly
using multiple models would not play the model ensem-
bling effect as in that in single domain. Inaccurate model
dispatching would increase the risk of danger in practical
applications. The model developed by direct data combina-
tion is likely to incur performance degradation due to the
discrepancy between domains. Intuitively, a generic expert
learned in a naive way might have inferior knowledge than
the specialized expert for each target domain.

In this paper, we propose a novel collaborative consis-
tency learning framework for multi-target domain adaptation,
which includes collaborative consistency learning among
multiple expert models and online knowledge distillation to
obtain a single domain-generic student model. This work
shows that once connection among domains is fully explored,
i.e., connection between each source-target domain pair and
among target domains, it can obtain even better performance
than models learned with unsupervised domain adaptation
methods for each source-target domain pair.

In the proposed collaborative consistency learning frame-
work, data from all domains are first translated to the style
of each target domain, respectively. In this way, we build a
bridge between each pair of target domains, that is, images

from the same domain are translated into different styles
corresponding to different target domains. For each style, a
semantic segmentation model is trained on both translated la-
beled data from source domain and translated unlabeled data
from multiple target domains. Each network is a domain-
specific expert and is trained with a kind of UDA loss and
an additional consistency loss that align segmentation re-
sults of images of the same content but with different styles
based on the bridge. Such collaborative consistency learning
helps knowledge exchange among domain-specific experts.
To obtain a single model that works across multiple target
domains, we design a student model whose weights are regu-
larized by the weights of multiple experts and further teach it
with multiple experts through knowledge distillation. In this
way, the student model is able to learn common semantic
knowledge from teachers across multiple domains.

To sum up, we make the following contributions:

• To the best of our knowledge, this is the first work that
explores the unsupervised multi-target domain adapta-
tion task in semantic segmentation.

• We propose a new collaborative consistency learning
framework to handle the MTDA task for semantic seg-
mentation, where unlabeled data in multiple target do-
mains is fully leveraged to train a single model that
works across all target domains.

• Experimental results demonstrate the effectiveness of
the proposed method. We can obtain a single model
that not only works well across multiple target domains
but also performs favorably against domain-specialized
models on each target domain.

2. Related Work
2.1. Unsupervised Domain Adaptation for Semantic

Segmentation

Single-target Domain Adaptation. A typical prac-
tice for UDA in segmentation is to apply a model that is
trained on a synthetic source domain to a real target do-
main. Unfortunately, the domain shift between the syn-
thetic and real data would deteriorate the performance
of model generalization [47, 64, 53]. There are three
main categories of methods to seek a bridge the gap be-
tween the source and target domain. The first category is
adversarial-based UDA [47, 35, 9, 29, 18, 19, 50, 42] ap-
proaches which reduce domain discrepancy by maximiz-
ing the confusion between source and target in the fea-
ture [47, 35, 9, 18, 19] or entropy space [50, 42]. The second
category of methods attempt to learn domain-invariant repre-
sentation by taking advantage of various image translation
techniques [62, 20], e.g. target-to-source translation in [53],
bidirectional translation in [31] and texture-diversified trans-
lation in [26]. The third category of methods attempt to apply



self-training [64, 32, 31, 29, 52, 26, 42] or model ensem-
bling [54, 50, 8] for further improvement in the unlabeled
target domain. Despite UDA for segmentation is a broadly
studied topic, most of the previous works address address
the UDA task under the setting of single-target domain adap-
tation (STDA), which has limitation in practical applications.
Moreover, most of the previous works for STDA focus on
fully utilizing the labeled data to improve the performance in
unlabeled domain [19, 3, 53]. We argue that fully utilize the
unlabeled data is also beneficial to explore the informative
information within unlabeled data, thus improve the final
performance on target domain. Based on these observations,
multi-target domain adaptation (MTDA) is more realistic
setting in real-world.

Multi-target Domain Adaptation. There are two naive
ways of directly extending domain-specialized UDA to work
on multiple target domains, that are (1) training multiple
models individually for each target domain (2) training a
single model on combined data from multiple target do-
mains. Unfortunately, these methods are not appropriate
to handle MTDA problem because they would suffer from
performance degradation due to the mismatching of multi-
target domains. Despite several works have been done to
address the MTDA task, they just focus on addressing classi-
fication task [14, 40, 56]. MTDA for segmentation is more
challenging as it is in essence a dense pixel prediction task.
The work most related to ours is [40], which also applies
multiple teachers to obtain a common knowledge model
for each target domain. However, in [40], unlabeled data
from different target domains are not fully exploited to train
stronger teachers and there is not any regularization in online
knowledge distillation on both the student and teachers.

Domain Generalization. The task of MTDA is also re-
lated to Domain generalization (DG), which attempts to
generalize a model trained only on source domain to mul-
tiple unseen target domains by learning domain-invariant
feature of source [25, 12, 1, 58, 30, 57]. Khosla et al. [25]
proposed removing the data bias by factoring out the domain-
specific and domain-agnostic component during training
on source domains. Yue et al. [30] proposed learning
a domain-invariant feature representation via adversarial
training. In [57], domain randomization and consistency-
enforced training are both used to learn a domain-invariant
network with synthetic images. Compared to the task of DG,
where data from target domain is absent, the MTDA task
aims at training a model for multiple target domains by fully
exploring the unlabeled data.

2.2. Knowledge Distillation

Knowledge distillation (KD) has been widely studied for
learning a compacting and fasting model for edge devices
in real-world applications including face recognition, super-
resolution and object detection. The idea of KD is first

proposed by [17], in which a student model is used to mimic
the distribution of teacher’s prediction. By transferring the
knowledge from teacher to student, the student model is
on par with or even better performance than the teacher
model [13, 38, 16, 41, 24]. Rather than training a student to
distill knowledge from a pretrained teacher, Zhang et al. [60]
proposed to learn an ensemble of students which collabora-
tively teach each other throughout the training process. In
this paper, we share similar philosophy as the general KD
and adapt it to the MTDA task. Multiple domain-specific
expert models with promising performance in each target
domain are adopted as teacher, and a student is expected to
perform well across all target domains. The student is taught
simultaneously by multiple teachers, and also gives feedback
to all teachers, all of which are implemented in an online
fashion. gives rise to robust domain-invariant CNNs trained
using synthetic images.

3. Methodology
3.1. Overview

We propose a novel framework to tackle the task of
MTDA for semantic segmentation. Since only images from
source domain have annotation maps, the key to this task is
to make full use of given source domain data and to explore
the way of mining rich structured information contained in
unlabeled target domains. Our solution is to first train an
expert model for each target domain, which is further encour-
aged to collaborate with each other simultaneously through
a bridge built among different target domains. Since our
final goal is to obtain a single model that works well on all
target domains, we take the above expert models as teachers
and additionally train a student model. It learns not only to
imitate the output of each expert on the corresponding target
domain but also to pulls different expert close to each other
with regularization on their weights. The overall framework
is illustrated in Figure 2. Note that all these are done in
parallel at the same time.

Formally, we denote data from source domain as Ds =
{(Is, ys)} and data from the m-th target domain as Dtm =
{Itm}, where Is and ys represent images and the associated
pixel-wise annotation. The goal of our work is to adapt the
knowledge from Ds to M target domains Dtm which are not
associated with any annotation map.

3.2. Collaborative Consistency Learning for MTDA

Learning of multi-target domain experts. For each
source-target domain pair, we train a domain adaptation
model with most existing unsupervised domain adaptation
method [50, 47]. In this work, we train a model with a
combination of cross-entropy loss on source domain Ds

for segmentation and adversarial loss for structure adapting,
similar to [50, 47]. However, instead of directly learning
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Figure 2. Overview of the proposed Collaborative Consistency Learning (CCL) framework for MTDA in semantic segmentation. The
framework is illustrated with M = 2 as example but it also holds for other numbers of target domains. Blue, yellow and green box represents
the source, the 1-st and the 2-nd target domains, respectively.

an expert with only data from each source-target pair, the
proposed method would learn an expert with data available
from all domains. Specifically, as for an expert of a par-
ticular target domain, style transfer method is first applied
to translate data from all domains to the style of that target
domain. In this way, discrepancy between different domains
is reduced to some extent. With different semantic contexts
but the same style helps learning a UDA expert model for a
particular domain. In addition, re-styled data also works as
a bridge to connect different target domains for knowledge
exchange. The expert model for the m-th target domain is
jointly optimized with supervised segmentation loss Lm

seg

and adversarial loss Lm
adv as follows:

Lm = Lm
seg(P

tm
s , ys) + λadv Lm

adv, (1)

where P is the output of the last layer of domain-specific
expert. For I(·)(·) and P (·)

(·) , superscript represents the trans-
lated style and subscript represents the corresponding do-
main. Lm

seg indicates the cross-entropy objective between
the probability map and its pixel-level annotation map ys.
λadv controls the weight of adversarial loss. Lm

adv is defined

as:

Lm
adv = E[log(1−Dm(Ptm))] + E[logDm(P tm

s )]

+

M∑
n=1
n 6=m

E[log(1−Dm(P tm
tn ))] + E[logDm(P tm

s )],

(2)
which enforces the model to align multiple target domains
with source domain and learn domain-invariant information
with adversarial training. Dm is a discriminator to classify
the probability map whether from the source or the integrated
target domain which is composed of multiple translated tar-
get domains. Note that all experts share the same network
architecture but each one has a different set of weights.

Knowledge exchange with collaborative consistency
learning. The above expert domain adaptation models are
able to give a reasonable performance on the correspond-
ing domain adaptation task. However, power within data
from multiple unlabeled target domains has not been fully
exploited. As for data from a certain target domain, it has
been translated into different styles of other target domains
but with the same semantic context reserved. Multiple ex-
pert models are trained to make the consistent pixel-wise
prediction for each sample with the same semantic context.
Since different expert models are learned on samples of



different styles, they learn the pixel-wise classification abil-
ity in different ways, and their predictions vary from each
other. It is such different predictions that provide an opportu-
nity to learn complementary knowledge from other experts
and extract essential information that really matters to the
performance of semantic segmentation. Therefore, we ex-
ploit collaborative learning for knowledge exchange among
multiple expert models. The knowledge exchange with col-
laborative learning from other experts to the m-th expert can
be formulated as:

Lm
cl =

1

M − 1

M∑
n=1
n6=m

DKL(Ptn ||P
tm
tn ), (3)

where DKL is average of Kullback-Leibler (KL)-divergence
between the probability map P tm

tn and Ptn . The expert of the
domainm is trained to imitate the output distribution of other
M -1 domain experts by Lcl. Such knowledge exchange
encourages each expert to make full use of unlabeled data in
an unsupervised manner. The overall objective function of
the m-th domain-specific expert is optimized by:

Lexpert =
1

M

M∑
n=1

(Ln + λcl Ln
cl), (4)

where λcl leverages the importance of consistency loss.

3.3. Online Knowledge Distillation from Multiple
Experts

We have explained how to train multiple domain-
specialized experts by making full use of available labeled
and unlabeled data to improve their capability. However, our
final purpose is to obtain a single model that performs well
across multiple target domains. We propose to online distill
knowledge from multiple expert models with additional reg-
ularization on their model weights. Specifically, a student
network is added to the framework and is supervised with
the output of multiple experts.

Lstudent
okd =

1

M

M∑
n=1

DKL(Ptn ||Qtn), (5)

where Q is the output of the last layer of the domain-generic
student. Then, the overall optimization objective of domain-
generic student model can be defined as:

Lstudent = Lstudent
seg (Qs, ys) + λadvLstudent

adv + λokdLstudent
okd ,

(6)
where λokd is the weight factor to balance the training of
online knowledge distillation and weights regularization, re-
spectively. Lstudent

seg means the cross-entropy objective func-
tion between the probability map Qs and its pixel-level an-
notation map ys. The adversarial loss Lstudent

adv is expressed
as:

Lstudent
adv =

1

M

M∑
n=1

E[log(1−Dstudent(Qtn))]

+ E[logDstudent(Qs)],

(7)

where Dstudent is a discriminator for training domain-
generic student model. However, the performance of directly
forcing a student to learn from multiple experts is limited
due to diversity among multiple experts. The student might
get confused in simultaneously distilling knowledge from
very different experts. To address this issue, we propose to
pull domain-specific experts a bit closer to the student. In
this way, the gap between experts is reduced and it is easier
for the student to distill common useful knowledge from
these experts. The gap between domain-specific experts
{Fm

expert}Mm=1 and domain-generic student Fstudent can be
reduced with the following the weights regularization term:

Lwr =
1

M

M∑
m=1

||θm − θstudent||1, (8)

where θm and θs represents the weights of the m-th domain-
specific expert model and the domain-generic student model,
respectively. The overall optimization objective of the CCL
framework can be defined as:

L = Lstudent + Lexpert + λwrLwr, (9)

where λwr is the weighting parameters. Finally, the obtained
domain-generic model is applied across M target domains.

4. Experiments
In this section, we describe the experiment setting and

implementation details of the proposed CCL. Extensive ab-
lation studies and comparison with other MTDA and STDA
methods are also provided. We show that our method can
work well on multiple large scale urban driving datasets.

4.1. Datasets

Under the MTDA experiment setting, synthetic datasets
including GTA5 [44] and SYNTHIA [45] are used as source
domain respectively, along with multiple real-world datasets
Cityscapes [10], Indian Driving (IDD) [49] and Mapil-
lary [39] as the target domains. The proposed CCL model
is trained with labeled source data and unlabeled target data
from various domains. Results on the validation sets of the
datasets corresponding to the multiple target domains are
used to evaluate its performance.

GTA5 contains 24,966 synthetic images with a resolution
of 1914×1052 pixels that are collected from the video game
GTA5 along with pixel-level annotations that are compatible
with Cityscapes, IDD and Mapillary in 19 categories.



Table 1. Performance comparison between our method and baseline models on adaptation from GTA5 to Cityscapes and IDD. The mIoU is
calculated by the average of the intersection-over-union (IoU) among all 19 categories. "R" represents the ResNet101-based model and "V"
represents the VGG16-based model. "C" and "I" indicate the target domain on Cityscapes and IDD, respectively. "*" represents the method
with multiple models that are individually trained for each target domain.
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Individual Model* V
C 88.4 30.8 78.4 29.8 25.9 20.5 17.6 11.2 79.2 30.3 65.1 46.6 9.1 81.2 22.9 29.9 0.1 11.9 0.5 35.8
I 68.8 2.5 61.4 29.2 20.8 24.9 7.3 34.3 75.6 29.3 91.2 39.8 28.3 63.6 35.8 38.8 0 39.2 7.8 36.8

Source only V
C 64.0 16.8 67.0 22.6 18.9 22.1 20.6 13.3 76.8 14.8 63.9 47.9 5.7 72.5 12.3 12.9 9.5 19.1 2.3 30.7
I 50.9 2.3 45.8 21.8 20.5 26.8 6.8 39.6 76.1 28.3 82.0 38.6 28.8 69.2 38.2 16.6 0 49.1 9.7 34.3

Data Combination V
C 86.8 16.1 77.1 27.8 16.6 22.1 16.4 6.1 80.9 30.9 68.0 43.2 8.9 80.7 23.3 15.2 0 11.0 1.3 33.3
I 73.8 3.5 52.3 25.8 19.4 24.6 8.4 32.0 78.9 32.2 84.6 38.6 37.5 73.1 38.5 12.9 0 41.3 5.1 35.9

Ours V
C 89.3 33.6 79.6 26.8 22.6 25.9 25.1 17.7 81.8 32.9 72.3 49.4 15.2 82.0 22.5 16.9 9.6 10.7 4.3 37.8
I 85.4 5.8 64.2 31.8 19.2 24.9 5.6 43.2 77.3 35.04 91.3 43.9 37.6 70.1 42.2 27.5 0 46.9 9.7 40.1

Individual Model* R
C 88.8 23.8 81.5 27.7 27.3 31.7 33.2 22.9 83.1 27.0 76.4 58.5 28.9 84.3 30.0 36.8 0.3 27.7 33.1 43.3
I 94.1 24.4 66.1 31.3 22.0 25.4 9.3 26.7 80.0 31.4 93.5 48.7 43.8 71.4 49.4 28.5 0 48.7 34.3 43.6

Source only R
C 79.0 9.2 76.1 15.7 17.1 23.3 28.0 14.8 82.4 22.9 70.8 53.7 27.1 76.6 35.9 5.4 0.7 20.3 39.6 36.8
I 60.5 8.3 50.8 8.2 18.9 27.0 6.2 33.3 67.6 22.4 87.4 52.0 45.8 71.8 43.9 37.1 0 50.7 20.2 37.5

Data Combination R
C 86.1 32.0 79.8 24.3 22.3 28.5 27.9 14.3 85.1 29.8 79.9 56.1 20.5 77.7 34.4 35.2 0.7 18.2 13.1 40.3
I 92.8 23.4 60.9 25.8 23.4 24.1 8.6 32.2 77.5 26.8 92.3 48.0 41.0 74.4 48.4 17.7 0 52.5 28.2 42.0

Ours R
C 90.3 34.0 82.5 26.2 26.6 33.6 35.4 21.5 84.7 39.8 81.1 58.4 25.8 84.5 31.4 45.4 0 29.9 24.7 45.0
I 95.0 30.5 65.6 29.4 23.4 29.2 12.0 37.8 77.3 31.3 91.9 52.4 48.3 74.9 50.1 36.6 0 56.1 32.4 46.0

Table 2. Comparison of our model with SOTA UDA methods,
DG methods and MTDA methods with ResNet-101 as backbone.
The mIoU and mIoU* are evaluated over the 19 and 13 classes,
respectively. "G", "S", "C" and "I" represent "GTA5", "SYNTHIA",
"Cityscapes" and "IDD", respectively. † means the results of our
implementation. All numbers correspond to the results without
using pseudo labels or model ensembling as reported in the original
papers.

Setting Method mIoU mIoU*
G→ C G→ I S→ C S→ I

STDA

AdaptSeg [47] 42.4 - 46.7 -
CLAN [35] 43.2 - 47.8 -

ADVENT [50] 43.8 - 47.8 -
BDL [31] 41.1 - - -

SIBAN [34] 42.6 - 46.3 -
AdaptPatch [48] 44.9 - - -
MaxSquare [8] 44.3 - 45.8 -
Kim et al. [26] 44.6 - - -

FDA [54] 44.6 - - -
IntraDA [42] 46.3 - 48.9 -

DG Yue et al.† [57] 42.1 42.8 44.3 41.2

MTDA
MTDA-ITA† [14] 40.3 41.2 42.7 39.4
MT-MTDA† [40] 43.2 44.0 45.2 42.2

Ours 45.0 46.0 48.1 44.0

SYNTHIA is another synthetic dataset. The SYNTHIA-
RAND-CITYSCAPES split of SYNTHIA, which contains
9,400 rendered images of 1280×760 resolution, is used as

Table 3. Ablation studies of the proposed CCL framework on GTA5
to Cityscapes and IDD with ResNet-101 as backbone.

Model # Lcl Lokd Lwr C I

1 42.3 42.9

2 3 41.8 43.9
3 3 43.1 43.5
4 3 3 44.0 44.7

5 3 3 42.4 45.2
6 3 3 44.2 44.9
7 3 3 3 45.0 46.0

Individual Model 43.3 43.6

another source domain. We use the 16 common categories
with Cityscapes, IDD and Mapillary for training and 13
common classes for testing.

Cityscapes is a real-world dataset with 5,000 street
scenes taken from European cities and labeled into 19 classes.
We use 2,975 images for training and 500 validation images.

IDD is a more diverse dataset than Cityscapes which
captures unstructured traffic on India’s road. It contains a
total of 10,003 images, with 6,993 images for training, 981
for validation and 2,029 for testing.

Mapillary provides 25,000 images collected from all
around the world and diverse source of image capturing
devices. It includes 18,000 images for training, 5,000 images
for testing, and 2,000 images for validation.
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Figure 3. Qualitative results for GTA5 to Cityscapes and IDD.

4.2. Training Details

Similar to [47] and [50], we use the DeepLab-v2 [5]
model with ResNet-101 [15] and VGG-16 [46] as back-
bones and initialize them with models pre-trained on Ima-
geNet [11]. For the discriminator, we also adopt the same
network architecture as [47, 50]. The semantic segmentation
model parameters are optimized with SGD optimizer [2]
where the weight decay and momentum are set to 0.9 and
5 × 10−4, respectively. The learning rate is initially set to
2.5 × 10−4. The polynomial procedure [5] is used as the
learning rate schedule. The discriminator is optimized with
Adam optimizer [27] with the momentum 0.9 and 0.99 with
the learning rate is set to 10−4. We set λadv, λcl, λokd and
λwr as 10−3. Here, we adopt a simple way to conduct image
translation in gamut of LAB color space [43].

4.3. Comparison with Baseline Models

We compare the segmentation performance of the pro-
posed CCL with three baselines: "Individual Model",
"Source Only" and "Data Combination". "Individual Model",
similar to [50], is to train multiple models for each corre-
sponding target. "Source Only" and "Data Combination"
are the MTDA setting which trains a single model across
multiple target domains. "Source Only" is to train a model
with the data only from source domain. "Data combination"
is trained by directly combine data from multiple target do-
mains as one domain. Here, we conduct the experiment
with two target domains (i.e., M=2), but our method can
be easily extended to the case of more number of target do-
mains. The results of each method are reported in Table 1.
In Table 1, the method of "Individual Model" that trains two
models individually on Cityscapes and IDD achieves 43.3%

and 43.6% mIoU on the corresponding domain. However,
it requires two models for each domain. Compared to that,
"Source only" use a single model but suffers considerable
performance drops by 6.5% and 6.1% on Cityscapes and
IDD because of the domain shift between the synthetic and
real data. By directly combining the multiple target data
as one domain, the model trained by "Data Combination"
also suffers the performance degradation lagging behind the
method of "Individual Model" by 3.0% and 1.6% mIoU
on Cityscapes and IDD. Our method with a single model
achieves 45.0% and 46.0% mIoU on Cityscapes and IDD,
which significantly outperforms the "Data Combination" by
+4.7% and +4.0%. By fully exploring unlabeled data from
multiple target domains, the proposed CCL even works bet-
ter than the "Individual Model", which adopts two models
and trained on each target domain individually, by +1.7%
and +2.4% mIoU on Cityscapes and IDD. The qualitative
comparison between different baselines and the proposed
CCL are provided in Figure 3.

4.4. Comparison with State-of-the-arts

We first compare our method with the single-target do-
main adaptation (STDA) method on GTA5-to-Cityscapes
and SYNTHIA-to-Cityscapes with using ResNet-101 as
backbone. The results are shown in Table 2. Our method per-
forms favorably against state-of-the-art domain-specialized
UDA methods on both GTA5-to-Cityscapes and SYNTHIA-
to-Cityscapes. However, it is noteworthy that with one round
of training the proposed obtains a single model that achieves
good performance on both Cityscapes and IDD. We also
compare our method with DG and MTDA on "GTA5 to
Cityscapes and IDD" and "SYNTHIA to Cityscapes and



Table 4. Results of adapting GTA5 to different target domains with
ResNet-101 as backbone. "C", "I" and "M" represent "Cityscapes",
"IDD" and "Mapillary", respectively.

Method Target mIoU
C I M C I M

STDA
3 43.3 - -

3 - 43.6 -
3 - - 45.8

MTDA

3 3 45.0 46.0 -
3 3 45.1 - 48.8

3 3 - 44.5 46.4
3 3 3 46.7 47.0 49.9

IDD". Compared to the method of DG, where the unla-
beled data were not be used in [57] during training. We
surpass [57] on both Cityscapes and IDD, respectively. We
compare our method with two previous methods on MTDA.
Since the previous works on MTDA only focus on the clas-
sification task, we carefully implement these methods in
semantic segmentation with the same network. Compared to
"MTDA-ITA", our method achieves significantly better per-
formance on both domains. "MT-MTDA" is the method that
adopts multiple teachers to alternatively teach a student in an
offline knowledge distillation manner. However, the method
also not consider to explore the information from different
target domains. Our method achieves better performance
than [40] on both Cityscapes and IDD.

4.5. Ablation Study

In this section, we evaluate each component in the pro-
posed CCL framework by conducting ablation studies on
GTA5 to Cityscapes and IDD task with ResNet-101 as back-
bone. Results are shown in Table 3.

We conduct a set of ablation study to examine the role of
different components of the proposed method. A baseline
(Model 1) here is designed as a method of directly applying
adversarial loss to both target domains, i.e., λcl = λokd =
λwr = 0. When online knowledge distillation loss λokd is
switched on, Model 2 gains +1.0% mIoU improvement on
IDD but suffers from 0.5% mIoU drops on Cityscapes. That
could be explained by the confusion caused by the domain
shift with expert models. When the weight regularization
loss λwr is switched on, Model 3 gains evident improvement
of +0.8% and +0.6% mIoU than the baseline on Cityscapes
and IDD. Using λokd and λwr simultaneously improve the
Model 1 by 1.7% and 1.8% mIoU on Cityscapes and IDD,
and also outperforms "Individual Model" in both target do-
mains. Consistent improvement over Model 2, Model 3 and
Model 4 is gained when collaborative consistency learning
is employed. Specifically, Model 7 gains evident 1.0% and
1.3% improvement from Model 4 on Cityscapes and IDD,
simultaneously.

Table 5. Results for real-to-real MTDA experiments.

Souce Target mIoU
C I M C I M

C
3 - 51.4 -

3 - - 49.6
3 3 - 53.6 51.4

I
3 46.5 - -

3 - - 49.0
3 3 46.8 - 49.8

M
3 57.9 - -

3 - 52.3 -
3 3 58.5 54.1 -

4.6. Generalization to Different Datasets

Synthetic-to-real MTDA. Here, we conduct a set of ex-
periments with different target domains. We consider the
task of STDA as our baseline, that includes: (1) GTA5 to
Cityscapes, (2) GTA5 to IDD and (3) GTA5 to Mapillary.
Each STDA model is trained on the corresponding target
domain, individually. In Table 4, three STDA baselines
with three individually trained models achieve 43.3%, 43.6%
and 45.8% mIoU on Cityscapes, IDD and Mapillary, respec-
tively. It can also be extended to adaptation to all these three
datasets. Experiment results show that our method with a sin-
gle model consistently works better than the STDA baseline,
which is individually trained on the corresponding target do-
mains. Our method using a single model consistently works
better than the STDA baseline on the corresponding target
domains.

Real-to-real MTDA. In Table 5, we also conduct a do-
main experiment from real-world datasets to real-world
datasets. Here one of the Cityscapes, IDD and Mapillary is
adopted as the source domain and the rest two are taken as
the two target domains. Experimental results show that the
proposed method not only works well on syn-to-real adapta-
tion but also does a good job on the case of real-to-real.

5. Conclusion

In this work, we propose a novel collaborative consis-
tency learning framework to achieve multi-target domain
adaptation. The key idea is to first train a strong expert
model for each target domain by simultaneously imposing
consistency constraint among prediction from multiple ex-
pert models. They are further used as multiple teachers to
collaboratively teach a student model in an online fashion
such that a single model is able to work well across multiple
target domains. Extensive experiments show that our method
not only produces a single model that works well on multi-
ple target domains but also achieves favorably performance
against domain-specialized UDA methods on each domain.
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