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Abstract

Sparse representation has been applied to visual track-

ing by finding the best candidate with minimal reconstruc-

tion error using target templates. However most sparse rep-

resentation based trackers only consider the holistic repre-

sentation and do not make full use of the sparse coefficients

to discriminate between the target and the background, and

hence may fail with more possibility when there is similar

object or occlusion in the scene. In this paper we develop

a simple yet robust tracking method based on the struc-

tural local sparse appearance model. This representation

exploits both partial information and spatial information

of the target based on a novel alignment-pooling method.

The similarity obtained by pooling across the local patches

helps not only locate the target more accurately but also

handle occlusion. In addition, we employ a template up-

date strategy which combines incremental subspace learn-

ing and sparse representation. This strategy adapts the

template to the appearance change of the target with less

possibility of drifting and reduces the influence of the oc-

cluded target template as well. Both qualitative and quan-

titative evaluations on challenging benchmark image se-

quences demonstrate that the proposed tracking algorithm

performs favorably against several state-of-the-art meth-

ods.

1. Introduction

Visual tracking has long been an important topic in com-

puter vision field, especially for application of surveillance,

vehicle navigation and human computer interface. Al-

though many tracking methods have been proposed, it re-

mains a challenging problem due to factors such as par-

tial occlusions, illumination changes, pose changes, back-

ground clutter and viewpoint variation.

Current tracking algorithms can be categorized into ei-

ther generative or discriminative approaches. Discrimina-

tive methods formulate tracking as a classification problem

which aims to distinguish the target from the background.

It employs the information from both the target and back-

ground. Avidan [2] combines a set of weak classifiers into

a strong one to do ensemble tracking. In [7] Grabner et al.

propose an online boosting method to update discrimina-

tive features and later in [8] a semi-online boosting algo-

rithm is proposed to handle the drifting problem. Babenko

et al. [3] use multiple instance learning (MIL) which puts

all ambiguous positive and negative samples into bags to

learn a discriminative model for tracking. Kalal et al. [9]

propose the P-N learning algorithm to exploit the underly-

ing structure of positive and negative samples to learn ef-

fective classifiers for object tracking. Wang et al. [20] base

the discriminative appearance model on superpixels, which

facilitates the tracker to distinguish between the target and

background.

Generative methods formulate the tracking problem as

searching for the regions most similar to the target model.

These methods are based on either templates [13, 5, 15,

1, 10] or subspace models [4, 18]. To adapt to the target

appearance variations caused by pose change and illumi-

nation change, the target appearance model is updated dy-

namically. Matthews et al. [15] develop a template update

method which can reduce the drifting problem by aligning

with the first template to reduce drifts. In [18], the low-

dimensional subspace representation is learned incremen-

tally during the tracking process to adapt to the changes of

target appearance. Kwon et al. [10] decompose the observa-

tion model into multiple basic observation models to cover

a wide range of pose and illumination variation. Most of

these methods use the holistic model to represent the target

and hence cannot handle partial occlusion or distracters.

Recently, several tracking methods based on sparse rep-

resentation have been proposed [16, 12, 17, 11]. Mei et

al. [16, 17] adopt the holistic representation of the object

as the appearance model and then track the object by solv-

ing the ℓ1 minimization problem. Liu et al. [11] propose

a tracking algorithm based on local sparse model which

employs histograms of sparse coefficients and the mean-

shift algorithm for object tracking. However, this method is

based on a static local sparse dictionary and may fail when

there is similar object in the scenes.

In this paper, we propose an efficient tracking algorithm

with structural local sparse model and adaptive template up-
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date strategy. The proposed method samples overlapped

local image patches within the target region. We observe

that sparse coding of local image patches with a spatial lay-

out contains both spatial and partial information of the tar-

get object. The similarity measure is obtained by proposed

alignment-pooling method across the local patches within

one candidate region. This helps locate the target more ac-

curately and handle partial occlusion. In addition, the dic-

tionary for local sparse coding is generated from the dy-

namic templates, which are updated online based on both

incremental subspace learning and sparse representation.

The update scheme facilitates the tracker to account for ap-

pearance changes of the target. Due to the simplicity of ap-

pearance model and template update strategy, our method

can track the target efficiently.

The contributions of this work are summarized as fol-

lows. First, sparse codes of local image patches with spatial

layout in an object are used to model its appearance model.

As for the sparse codes, we propose an alignment-pooling

method to improve accuracy of tracking and reduce the in-

fluence of occlusion as well. Second, both incremental sub-

space learning and sparse representation are employed to

update the templates to handle the drifting problem and par-

tial occlusion. Experiments on challenging benchmark im-

age sequences demonstrate that the proposed tracking ap-

proach performs favorably against several state-of-the-art

methods.

2. Related Work and Context

Sparse representation has been successfully applied in

numerous vision applications [21, 16, 12, 17, 11]. With

sparsity constraints, one signal can be represented in the

form of linear combination of only a few basis vectors.

In [16, 17], the target candidate is sparsely represented as

a linear combination of the atoms of a dictionary which

is composed of dynamic target templates and trivial tem-

plates. By introducing trivial templates, the tracker can han-

dle partial occlusion. This sparse representation problem

is then solved through ℓ1 minimization with non-negativity

constraints. In [12], dynamic group sparsity which in-

cludes both spatial and temporal adjacency is introduced

into the sparse representation to enhance the robustness of

the tracker. In [11], a local sparse representation scheme is

employed to model the target appearance and then represent

the basis distribution of the target with the sparse coding

histogram. Due to the representation of local patches, their

method performs well especially in handling the partial oc-

clusion. However, histograms of local sparse coefficients

alone cannot provide enough spatial information. A mean-

shift algorithm [5] and a sparse-representation-based voting

map are used to better track the target.

Our work bears some similarity to [11] in the use of lo-

cal sparse representations. However, we sample larger over-

lapped local image patches with fixed spatial layout where

there are more spatial structural information in them. In ad-

dition, we make full use of the sparse coding coefficients

with the proposed alignment-pooling method rather than

histograms and kernel densities to measure the similarity.

Instead of using fixed template [1] or dictionary [11] learned

from the first frame, we update the dictionary adaptively us-

ing dynamic templates. Object tracking with a static tem-

plate is likely to fail in dynamic scenes due to large appear-

ance change. In [16, 17], the template is updated accord-

ing to both the weights assigned to each template and the

similarity between templates and current estimation of tar-

get candidate. Different from that template update scheme,

we employ both incremental subspace learning and sparse

representation to update the templates adaptively. This tem-

plate update method reduces the drifting problem and puts

more weights on the important parts of the target. In ad-

dition, it reduces the influence of the template with partial

occlusion.

3. Structural Local Sparse Appearance Model

Given the image set of the target templates T =
[T1,T2, . . . ,Tn], we sample a set of overlapped local im-

age patches inside the target region with a spatial layout.

These local patches are used as the dictionary to encode

the local patches inside the possible candidate regions, i.e.

D =
[

d1,d2, . . . ,d(n×N)

]

∈ R
d×(n×N), where d is the

dimension of the image patch vector, n is the number of

target templates and N is the number of local patches sam-

pled within the target region. Each column in D is obtained

by ℓ2 normalization on the vectorized local image patches

extracted from T. Each local patch represents one fixed

part of the target object, hence the local patches altogether

can represent the complete structure of the target. Since

the local patches are collected from many templates, this

dictionary captures the commonality of different templates

and is able to represent various forms of these parts. For a

target candidate, we extract local patches within it and turn

them into vectors in the same way, which are denoted by

Y = [y1,y2, . . . ,yN ] ∈ R
d×N .

Figure 1. Illustration of feature formation by alignment-pooling

(darker color elements have larger values).

With the sparsity assumption, the local patches within

the target region can be represented as the linear combina-



Figure 2. Comparison of the pooled features obtained by alignment-pooling as for good and bad candidates. The upper and lower rows

show the pooled features for a good candidate (i.e., a region close to ground-truth tracking result) and a bad candidate (i.e., a region with

large tracking error).

tion of only a few basis elements of the dictionary by solv-

ing

min
bi

‖yi −Dbi‖
2
2 + λ‖bi‖1,

s.t. bi < 0
(1)

where yi denotes the i-th vectorized local image patch,

bi ∈ R
(n×N)×1 is the corresponding sparse code of that lo-

cal patch, and bi < 0 means all the elements of bi are non-

negative. Note B = [b1,b2, . . . ,bN ] represents the sparse

codes of one candidate. The sparse coefficients of each lo-

cal patch are divided into several segments, according to the

template that each element of the vector corresponds to, i.e.,

b⊤
i =

[

b
(1)⊤
i ,b

(2)⊤
i , . . . ,b

(n)⊤
i

]

, where b
(k)
i ∈ R

N×1 de-

notes the k-th segment of the coefficient vector bi. These

segmented coefficients are weighted to obtain vi for the i-th

patch,

vi =
1

C

n
∑

k=1

b
(k)
i , i = 1, 2, . . . , N, (2)

where vector vi corresponds to the i-th local patch and C

is a normalization term. As the templates contain the tar-

get object with some appearance variation, the blocks that

appear frequently in these templates (as indicated by their

sparse codes) should be weighted more than others for more

robust representation. This weighting process is carried out

by Eq. 2 with their sparse codes. All the vectors vi of local

patches in a candidate region form a square matrix V and

further processed with a novel pooling method.

Although for a single local patch we lose spatial infor-

mation by considering only its own coefficient vector as de-

scribed above, we alleviate this problem by using a novel

method to pool the responses of local patches within the

candidate region. We propose an alignment-pooling algo-

rithm rather than max-pooling method [22] to improve the

accuracy of location estimation. After obtaining vi, each lo-

cal patch at a certain position of the candidate is represented

by patches at different positions of the templates. The local

appearance variation of a patch can be best described by the

blocks at the same positions of the template (i.e., using the

sparse codes with the aligned positions). For example, the

top left corner patch of the target object in Figure 1 should

be best described by the first element of v1 as it should have

the largest coefficient value (via Eq 2 and its block location).

Therefore, we take the diagonal elements of the square ma-

trix V as the pooled feature, i.e.,

f = diag(V), (3)

where f is the vector of pooled features. Since the weighting

operation increase the stability of sparse coding, this pool-

ing method further aligns local patterns between target can-

didate and the templates based on the locations of structural

blocks. The aligned tracking results also facilitate the incre-

mental subspace learning for template update in our algo-

rithm. The proposed representation with alignment-pooling

process captures structural information of a target object in

terms of blocks. In addition, this appearance model is able

deal with partial occlusion. When occlusion occurs, the ap-

pearance change makes the representation of the occluded

local patches dense. However, the local patches which are

not occluded still have sparse representations.

After pooling across these local patches, the influence of

outliers is reduced and the structural information is retained

in the representation to better locate the target. Figure 2

shows the vector vi and pooled features obtained by our

method for good and bad target candidates. When the tar-

get object is partial occlusion, the image patches which are

not occluded can still be represented by only few atoms of

the dictionary with large coefficients whereas the occluded



Figure 3. Comparison of the confidence map obtained by three kinds of pooling methods within a range around the target object. Red

color blocks denote large coefficient (confidence) values and blue color ones denote low values. The resulting confidence map using our

representation indicates the patches near the center are likely to belong to the target as opposed to other ones.

patches have dense representations (as illustrated in the top

row of Figure 2). However, for a bad candidate, the lo-

cal image patches have more dense coefficients, and the

pooled features are smaller (as illustrated in the bottom row

of Figure 2). To demonstrate the advantage of the proposed

alignment-pooling algorithm, we compare the confidence

map obtained by three kinds of pooling methods within a

range around target. Based on these observations as illus-

trated in Figure 3, accurate localization of the target object

can be achieved by the proposed local sparse representation

with alignment-pooling.

4. Template Update

Tracking with fixed templates is prone to fail in dynamic

scenes as it does not consider inevitable appearance change

due to factors such as illumination and pose change. How-

ever, if we update the template too frequently with new ob-

servations, errors are likely to accumulate and the tracker

will drift away from the target. Numerous approaches have

been proposed for template update [15, 18, 16]. Ross et

al. [18] extend the sequential Karhunen-Loeve algorithm

and propose a new incremental principal component anal-

ysis (PCA) algorithm to update both the eigenbasis and the

mean as new observations arrive. However the PCA based

representation is sensitive to partial occlusion because of the

assumption that reconstruction error is Gaussian distributed

with small variance. Mei and Ling [16, 17] apply sparse

representation to visual tracking and employ both target

templates and trivial templates to handle outliers and partial

occlusion. However, this method is not equipped with any

mechanism to handle the drifting problem. In this paper,

we introduce subspace learning into sparse representation

to adapt templates to the appearance change of the target,

and reduce the influence of the occluded target template as

well.

In many tracking methods, the earlier tracking results are

more accurate so they should be stored longer than newly

acquired results in the template stack. One way to balance

between the old and new templates is to assign different up-

date probability to the templates. We generate a cumulative

probability sequence

Lp =

{

0,
1

2n−1 − 1
,

3

2n−1 − 1
, . . . , 1

}

, (4)

and generate a random number r according to uniform dis-

tribution on the unit interval [0, 1]. By determining which

section the random number lies in, we can choose the tem-

plate to be replaced. This leads to slow update of old tem-

plates and quick update of new ones, and thereby alleviating

the drifting problem.

The strength of both sparse representation and subspace

learning is exploited to model the updated template. We

collect the tracking results of the target object and then carry

out the incremental learning method proposed in [18]. Not

only can this incremental method adapt to the appearance

change but also preserve visual information the collected

observations have in common. The estimated target can be

modeled by a linear combination of the PCA basis vectors

and additional trivial templates employed in [16]

p = Uq+ e =
[

U I
]

[

q

e

]

, (5)

where p denotes the observation vector, U is the matrix

composed of eigenbasis vectors, q is the coefficients of

eigenbasis vectors and e indicates the pixels in p that are

corrupted or occluded. As the error caused by occlusion

and noise is arbitrary and sparse, we solve the problem as

ℓ1 regularized least square problem,

min
c

‖p−Hc‖
2
2 + λ‖c‖1, (6)

where H =
[

U I
]

, c =
[

q e
]⊤

and λ is the reg-

ularization parameter. The coefficients of trivial templates

are employed to account for noise or occlusion and avoid

much occlusion to be updated into the template set. Thus

the reconstructed image using only PCA basis vectors is not

sensitive to the influence of occlusion. The reconstructed

image is then used for updating the template to be replaced.

This process can be viewed as introducing sparsity into sub-

space representation. Some templates obtained from the



(a) When the target object is not occluded but with pose variation.

(b) When the target is occluded.

Figure 4. Examples of templates obtained by the proposed tem-

plate update strategy.

above-mentioned process are shown in Figure 4. We can

see that the templates obtained when no occlusion occurs

can adapt to the appearance change of the target. When

there is occlusion, the templates focus on the parts which

are not contaminated. With this template update strategy,

our method can adapt to the appearance change of the tar-

get and handle the partial occlusion as well. The template

update strategy is summarized in Algorithm 1.

Algorithm 1: Template Update

Input: Observation vector of target estimation p, eigen-

basis vectors U, template set T and regularization pa-

rameter λ

1: Generate a sequence of number in ascending order

and normalize them into [0, 1] as the probability for tem-

plate update

2: Generate a random number between 0 and 1 which is

for the selection of which template to be discarded

3: Solve Eq. 6 and obtain q and e

4: Add p̂ = Uq to the end of the template set T

Output: New template set T

5. Proposed Tracking Algorithm

In this paper, object tracking is carried out within the

Bayesian inference framework. Given the observation set

of target z1:t = {z1, . . . , zt} up to the t-th frame, the tar-

get state variable xt can be computed by the maximum a

posteriori estimation,

x̂t = argmax
xi
t

p
(

xi
t|z1:t

)

, (7)

where xi
t indicates the state of the i-th sample. The poste-

rior probability p (xt|z1:t) can be inferred by the Bayesian

theorem recursively,

p (xt|z1:t) ∝ p (zt|xt)

∫

p (xt|xt−1) p (xt−1|z1:t−1) dxt−1,

(8)

where p (xt|xt−1) denotes the dynamic model and p (zt|xt)
denotes the observation model. The dynamic model

p (xt|xt−1) describes the temporal correlation of the tar-

get states between consecutive frames. We apply the affine

transformation with six parameters to model the target mo-

tion between two consecutive frames. The state transition

is formulated as p (xt|xt−1) = N (xt;xt−1,Σ), where Σ is

a diagonal covariance matrix whose elements are the vari-

ances of the affine parameters.

The observation model p (zt|xt) denotes the likelihood

of the observation zt at state xt. It plays an important role

in robust tracking. In our method, the observation model is

constructed by

p (zt|xt) ∝
N
∑

k=1

fk, (9)

where the right side of the equation denotes the similarity

between the candidate and the target based on the pooled

feature f . With the template updated incrementally, the ob-

servation model is able to adapt to the appearance change

of the target.

6. Experiments

The proposed algorithm is implemented in MATLAB

and runs at 1.5 frames per second on a Pentium 2.7 GHz

Dual Core PC with 2GB memory. The ℓ1 minimization

problem is solved with the SPAMS package [14] and the

regularization constant λ is set to 0.01 in all experiments.

For each sequence, the location of the target object is man-

ually labeled in the first frame. We resize the target image

patch to 32 × 32 pixels and extract overlapped 16 × 16 lo-

cal patches within the target region with 8 pixels as step

length. As for the template update, 8 eigenvectors are

used to carry out incremental subspace learning method

in all experiments every 5 frames. The MATLAB source

codes and datasets are available on our websites (http:

//ice.dlut.edu.cn/lu/publications.html, http:

//faculty.ucmerced.edu/mhyang/pubs.html).

We evaluate the performance of the proposed algorithm

on nine challenging sequences from prior work [1, 3, 10,

18, 19], the CAVIAR data set (http://groups.inf.ed.

ac.uk/vision/CAVIAR/CAVIARDATA1/) and our own.

The challenges of these videos include illumination vari-

ation, partial occlusion, pose variation,background clutter

and scale change. The proposed approach is compared

with six state-of-the-art tracking methods including incre-

mental visual tracking (IVT) method [18], fragment-based

(FragTrack) tracking method [1], ℓ1 tracker (ℓ1) [16], mul-

tiple instance learning (MIL) tracker [3], visual tracking

decomposition (VTD) method [10] and P-N learning (PN)

tracker [9]. For fair evaluation, we evaluate the proposed

tracker against those methods using the source codes pro-

vided by the authors. Each tracker is run with adjusted pa-

rameters.

6.1. Quantitative Evaluation

Two evaluation criteria are employed to quantitatively

assess the performance of the trackers. Figure 5 presents

the relative position errors (in pixels) between the center

and the tracking results. Table 1 summarizes the average
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Figure 5. Quantitative evaluation of the trackers in terms of position errors (in pixels).

center location errors in pixels. In addition, given the track-

ing result RT and the ground truth RG, we use the de-

tection criterion in the PASCAL VOC [6] challenge, i.e.,

score = area(RT∩RG)
area(RT∪RG) to evaluate the success rate. Ta-

ble 2 gives the average success rates. Overall, the proposed

tracker performs favorably against state-of-the-art methods.

The performance of our approach can be attributed to the ef-

ficient pooling methods across sparse codes of local image

patches with a spatial layout.

IVT ℓ1 PN VTD MIL FragTrack Ours

Faceocc2 10.2 11.1 18.6 10.4 14.1 15.5 3.8

Caviar 66.2 65.9 53.0 60.9 83.9 94.2 2.3

Woman 167.5 131.6 9.0 136.6 122.4 113.6 2.8

Car 11 2.1 33.3 25.1 27.1 43.5 63.9 2.0

David 3.6 7.6 9.7 13.6 16.1 76.7 3.6

Singer 8.5 4.6 32.7 4.1 15.2 22.0 4.8

Board 165.4 177.0 97.3 96.1 60.1 31.9 7.3

Stone 2.2 19.2 8.0 31.4 32.3 65.9 1.8

Table 1. Average center error (in pixels). The best two results are

shown in red and blue fonts.

IVT ℓ1 PN VTD MIL FragTrack Ours

Faceocc2 0.59 0.67 0.49 0.59 0.61 0.60 0.82

Caviar 0.21 0.20 0.21 0.19 0.19 0.19 0.84

Woman 0.19 0.18 0.60 0.15 0.16 0.20 0.78

Car 11 0.81 0.44 0.38 0.43 0.17 0.09 0.81

David 0.72 0.63 0.60 0.53 0.45 0.19 0.79

Singer 0.66 0.70 0.41 0.79 0.33 0.34 0.81

board 0.17 0.15 0.31 0.36 0.51 0.73 0.74

Stone 0.66 0.29 0.41 0.42 0.32 0.15 0.56

Table 2. Success rate of tracking methods. The best two results are

shown in red and blue fonts.

6.2. Qualitative Evaluation

Occlusion: Figure 6 demonstrates how the proposed

method performs when the target undergoes heavy occlu-

sion or long-time partial occlusion. In the Faceocc2 se-

quence, numerous trackers drift away from the target or

do not scale well when the face is heavily occluded. Our

tracker is able to track the target accurately because the

structural local sparse appearance model has both spatial

and partial information of the target. Those information

helps avoid much influence of occlusion and better esti-

mate the target. In the Caviar sequence, numerous meth-

ods fail to track the target because there are similar objects

around it when heavy occlusion occurs. Our tracker does

not drift away when the target reappears again because it

is easier to differentiate the target and similar objects us-

ing both holistic and local information. Furthermore, our

tracker is not affected much by occlusion owing to the struc-

tural local sparse appearance model and robust template

update scheme. In the Woman sequence, the target ob-

ject undergoes pose variation together with long-time par-

tial occlusion. Based on the local patches and adaptive tem-

plate update strategy, our tracker focuses more on the up-

per body which remains almost the same though the lower

body changes a lot or is heavily occluded. It can success-

fully track the target throughout the entire sequence. The

PN tracker (based on object detection with global search)

is able to re-acquire the target when the target object reap-

pears after occlusion. However, the other trackers lock on

a car with similar color to the trousers when the legs of the

woman are heavily occluded.

Illumination change: Figure 7 presents the tracking re-

sults in the sequences with large illumination variation. In

the Car 11 sequence, the contrast between the target and

the background is low. The IVT tracker and our method

perform well in tracking the vehicle while the other meth-

ods drift to the cluttered background or other vehicles when

drastic illumination variation occurs. This can be attributed



(a) Faceocc2

(b) Caviar

(c) Woman

Figure 6. Tracking results when the target objects are heavily occluded.

(a) Car 11

(b) David

(c) Singer

Figure 7. Tracking results when there is large illumination variation.

to the use of incremental subspace learning which is able

to capture appearance change due to lighting change. In

the David sequence, a person walks out of the dark con-

ference room and into an area with spot lights. Likewise,

in the Singer sequence a woman undergoes large appear-

ance change due to drastic illumination variation and scale

change. While a few trackers are able to keep track of the

target to the end, the proposed algorithm achieves low track-

ing error and high success rate.

Background clutter: Figure 8 presents the tracking results

where the target objects appear in background clutters. For

Board sequence, most trackers drift away from the target as

holistic representations are not effective in handling objects

with large shape variations. The FragTrack and proposed

methods are able to track the target better due to the use of

local appearance models. The Stone sequence is challeng-

ing as there there are numerous stones of different shape and

color. The FragTrack, MIL and VTD trackers drift to stones

when the target is occluded whereas the IVT tracker and our



(a) Board

(b) Stone

Figure 8. Tracking results when the targets appear in cluttered backgrounds.

method successfully keep track of the target throughout the

sequence. The PN tracker (based on object detection with

global search) is able to re-acquire the target again after

drifting to the background, but with higher tracking errors

and lower success rate.

7. Conclusion

In this paper, we propose an efficient tracking algorithm

based on structural local sparse appearance model and adap-

tive template update strategy. The proposed method ex-

ploits both spatial and local information of the target by

alignment-pooling across the local patches with a spatial

layout. This helps locate the target more accurately and is

less insensitive to occlusion. In addition, sparse represen-

tation is combined with incremental subspace learning for

template update. It not only adapts the tracker to account

for appearance change of the target but also prevents incor-

rectly estimated or occluded observations from being put

into the template set for update. Experimental results com-

pared with several state-of-the-art methods on challenging

sequences demonstrate the effectiveness and robustness of

the proposed algorithm.
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