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ABSTRACT

Fragment-based tracking methods have shown its robustness in han-

dling partial occlusion and pose change. In this paper, we propose

a novel fragment-based tracking approach using on online multiple

kernel learning (MKL) method. An online MKL method for object

tracking is implemented by considering temporal continuity explicit-

ly. Instead of directly using multiple features of objects, we employ

MKL to make full use of multiple fragments of the object. This

can automatically assign different weights to the fragments accord-

ing to their discriminative power. In addition, for better robustness

two kinds of independent features are computed to enrich the repre-

sentation of patches. We build a classifier for each type of feature

and assign them different weights according to their performance on

classification. Both qualitative and quantitative evaluations on chal-

lenging image sequences demonstrate that the proposed tracking ap-

proach performs favorably against several state-of-the-art methods.

Index Terms— object tracking, multiple kernel learning (MK-

L), fragment-based tracking

1. INTRODUCTION

For designing a robust online model-free tracker, one of the most im-

portant issues is to develop an effective appearance model that can

handle both intrinsic (e.g., pose and shape variations) and extrinsic

(e.g., illumination change and partial occlusion) factors. From the

perspective of object representation, appearance model can be ei-

ther global-based or local-based. Tracking methods based on holis-

tic representation (e.g., Meanshift [1] and IVT [2]) treat the object

as an entity. Though these methods are computationally efficient,

they tend to lose the object structure information and are sensitive

to illumination change and partial occlusion. In contrast, trackers

based on local representation (e.g., Co-Tracking [3], MIL [4] PN [5]

and SPT [6]) usually model the tracked target as a collection of lo-

cal features and fed them to classifiers to distinguish the target from

background. They are effective in handling partial occlusion, how-

ever the high dimension of feature requires expensive computational

costs for learning and testing. Besides, they often confuse the target

with similar background due to the loss of global information.

Adam et al. [7] propose a fragment-based tracking method and

further Wang et al. [8] embed the fragment-based representation in-

to mean shift framework. It computes the voting maps of multiple

fragments by comparing with the histograms of corresponding frag-

ments within the template and then combine them to make estima-

tion. However, equal importance being assigned to those patches and

static template limit the performance of that tracker.

Recently, multiple kernel learning (MKL) method has been ap-

plied in object classification and recognition task, showing great ad-

vantages on the improvement of accuracy [9, 10]. MKL addresses

the classification problem by learning and optimizing a multiple-

kernel classifier objective from training data. Different weights of

multiple features obtained can be used to measure their contribution

to the overall discriminative power. MKL has been introduced into

object tracking by Yang et al. [11] and achieves good performance.

However, their method does not adopt fragment-based representa-

tion and hence may be sensitive to partial occlusion.

For visual tracking, to the best of our knowledge, there are few

methods that work on combining multiple fragments with different

weights. In this paper, we propose a fragment-based tracking method

which use online multiple kernel learning (MKL) method to adap-

tively integrate the discriminative power of multiple fragments of the

object. Similar to FragTrack [7], we also represent the object with

histograms of multiple fragments. However, we take advantage of

multiple fragments under a discriminative framework. We employ

MKL classifier to find the optimal boundary which is able to sepa-

rate the object from background. Different weights are assigned to

multiple patches by MKL classifier to maximize the discriminative

power. For better robustness, two types of complementary features

are extracted to train independent MKL classifiers. Final estimation

of the target is based on the combined decision of those classifiers.

The classifiers are updated in a conservative way to reduce drifting

problem.

Contributions The contributions of this paper include:

• We implement an online MKL method for object tracking

which explicitly considers temporal continuity.

• A fragment-based tracking method based on multiple kernel

learning (MKL) is proposed.

• Tracking performance is further improved by integrating two

independent types of features.

2. ONLINE MULTIPLE KERNEL LEARNING FOR

OBJECT TRACKING

Multiple kernel learning (MKL) is an extension of kernel learning

methods (especially kernel SVM). By using different types of kernel

to depict different properties of samples (e.g., feature and metric),

MKL provides a unified framework for model combination and se-

lection. One of the most influential works is the SimpleMKL method

proposed by Rakotomamonjy et al. [12], which defines kernel func-

tion as a convex linear combination of kernels,

K
(
x,x

′) =

M∑
m=1

βmKm

(
x,x

′)
,

M∑
m=1

βm = 1, βm ≥ 0, (1)

where Km (x,x′) denotes the m-th kernel and βm is the weight

of each kernel. The SimpleMKL algorithm is aimed to simultane-

ously obtain support vectors, support vector coefficients and kernel

weights by solving the following constrained optimization problem,

min
β

J (β) such that

M∑
m=1

βm = 1, βm � 0, (2)

where
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J (β) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
{f},b,ξ

1

2

∑
m

1

βm

‖fm‖2Hm
+ C

∑
i

ξi ∀i

s.t. yi
∑
m

fm (xi) + yib � 1− ξi

ξi � 0, ∀i.

(3)

In Eq. 3 xi denotes i-th training sample, yi and ξi represent its label

and slack variable respectively and C is a penalty factor for slack

variable. The SimpleMKL algorithm can be solved by two iterative

steps: (1) fix β, it is reduced to be a standard SVM optimization

problem; (2) fix f(.), Rakotomamonjy et al. [12] solve β by using a

reduced gradient method, which computes simple differentiation of

the dual function of Eq. 3 with respect to βm,

∂J

∂βm

= −
1

2

∑
i,j

αiαjyiyjKm (xi,xj) , ∀m, (4)

where αi stands for the dual coefficient of xi (if α∗
i �= 0, xi is also

known as support vector). The obtained decision function of MKL

classifier for binary classification can be written as

FMKL (x) =
∑
i

αiyi
∑
m

βmKm (x,xi) + b. (5)

However, the basic SimpleMKL method is not suitable for ob-

ject tracking which requires online learning to adapt to the appear-

ance change of both the target and background. In [13], an incremen-

tal MKL method is proposed for object recognition. We note that it

is improper to directly extend it into object tracking since it does

not take prior information (i.e., temporal continuity) of the tracking

problem into consideration. In this study, we implement an online

MKL method for object tracking that considers temporal continuity

explicitly. The objective function of the t-th update is defined as

min
βt

J
(
β
t
)
such that

M∑
m=1

β
t
m = 1, βt

m � 0, (6)

where

J
(
β
t
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{f,bt,ξ}

1

2

∑
m

1

βt
m

∥∥f t
m

∥∥2

Hm

+ C
∑
i

ξi

+
1

2
λ
∑
m

(
β
t
m − β

t−1
m

)2
, ∀i

s.t. y
t
i

∑
m

fm
(
x
t
i

)
+ y

t
ibt � 1− ξi

ξi � 0, ∀i.

(7)

The regularization term 1

2
λ
∑
m

(
βt
m − βt−1

m

)2
models temporal con-

tinuity explicitly, where λ is a small constant. We can see that the

form of our objective function (Eq. 6 and 7) is similar to that of the

basic SimpleMKL algorithm (Eq. 2 and 3). Thus, we can use the

SimpleMKL package [12] to solve our online MKL problem. Based

on Lagrangian dual theory, the differentiation of the dual function

of Eq. 7 with respect to βt
m can be obtained as,

∂J

∂βt
m

= −λ
(
β
t
m − β

t−1
m

)
−

1

2

∑
i,j

α
t
iα

t
jy

t
iy

t
jKm

(
x
t
i,x

t
j

)
. (8)

Due to space limitation, we merely highlight the difference of our

online MKL method compared with SimpleMKL [12].

(1) Training Samples: To achieve online learning, we composite

the training set by X t =
{
X t−1

sup ,X t
new

}
, where X t =

{
x
t
1,x

t
2, ...

}
denote the training samples at t-th update, X t−1

sup stands for support

vectors obtained by last update and X t
new are new collected samples

(The way to collect training samples is described in Section 3). This

prevents the classifier from varying too abruptly.

Fig. 1. Illustration about how we make use of MKL in the proposed

fragment-based tracking.

(2) Temporal Continuity: Compared with SimpleMKL [12], we

consider the temporal continuity prior explicitly by introducing an

additional regularization term. The differentiation form for the re-

duced gradient method is derived as Eq. 8. So it is easy to implement

the online MKL method by using the SimpleMKL package [12]. We

note that the consideration of temporal continuity makes our imple-

mented online MKL method more suitable for visual tracking.

3. FRAGMENT-BASED TRACKING USING MULTIPLE

KERNEL LEARNING

Different from the tracker proposed by Adam et al. [7], we present an

online discriminative framework to make full use of multiple frag-

ments of object. Our method works by treating patches differently

according to their discriminative power. Just like most tracking-by-

detection methods [4, 5], we also adopt the output margin of classi-

fier as the observation likelihood of the target.

3.1. Fragment-based Tracking Using MKL

Due to the success of HOG [14] in object detection and tracking

tasks, we adopt the similar way about block division used in that

paper to generate fragments. One feature vector is computed for

each fragment and feature vectors of all fragments altogether convey

structural and global information. Our goal is to find a strategy to in-

tegrate this information to maximize the overall discriminative pow-

er. MKL has shown its potential in integrating multiple features in

recent research. But most of their inputs are concatenated huge fea-

ture vectors of high dimension and much redundant and confusing

information are mixed into it. Instead, we deem each local patch as

one distinctive feature of the object. Therefore, as for our problem,

the output margin of MKL classifier can be re-written as follows:

FMKL(x) =

N∑
i=1

αiyi

P∑
p=1

βpKp(x, xi) + b (9)

where Kp(x, x
′) = K(fp(x), fp(x

′)), fp(x) denotes the mapping

function to feature space of patch p, parameter P denotes the to-

tal number of patches and βp weighs the importance of each patch.

Fig. 1 gives a simple illustration about how we make use of frag-

ments and MKL classifier in our fragment-based tracking. This

problem can be efficiently solved by the above mentioned online

MKL (Section 2). The weights βp of patches allow us to account

for the fact that some patches within the window are more represen-

tative and discriminative, while others only contain redundant and

confusing information. The weighted sum of these patch kernels p-

reserve high discriminative performance. When the target is partially

occluded or experiences small pose variation, the proposed method

is able to pick out the most discriminative patches to separate the

object from background (shown in Section 4.1).

3.2. Multi-cue combination and model update

Cues combination: Combination of independent features is able to

complementarily enrich the representation of an object and improve
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robustness of tracking [3, 15]. Though kernel alignment has been

proposed in [16], it is not quite proper to directly combine kernels

of heterogeneous features, especially as for the small-sample prob-

lem like tracking. We build a classifier for each type of feature and

assign them different weights with respect to their performance on

classification. The weight of classifier wi, i = 1, 2, is computed by

wi =

⎧⎪⎪⎨
⎪⎪⎩

max{c′i}

max{c′1}+max{c′2}
a1, a2 � T

ai

a1 + a2

otherwise

(10)

where c′1 and c′2 denote confidence computed with the output of both

classifiers in the frame prior to update, a1 and a2 represent the clas-

sification accuracy of each classifier on previous training set and T

is a threshold on classification accuracy (T is set to 0.9 in this paper).

Then final confidence c is the weighted sum of confidence c1 and c2
which are computed in the current frame by classifiers.

l = w1 × c1 + w2 × c2 (11)

This means only under the condition that both classifiers are reliable,

do weights depend on the ratio of classifiers’ largest confidence.

Otherwise, classification accuracy determines the weights of those

two types of features. Since our tracking framework is based on the

discriminative power of patches, the essence of multi-cue fusion here

lies in that it finds the most suitable matching scheme for patch and

feature type.

Sample collection and model update: To achieve online learning

for MKL classifier, we collect new training samples in two ways, i.e.

X t =
{
X t−1

sup ,X t
new

}
. The positive samples of X t

new are previous-

ly tracked results {Xprev}. A hard threshold on final confidence is

set to prevent bad tracked results from being updated into training

set. We experimentally choose a threshold value of 0.4 to compare

with the maximum of confidence. This allows classifiers to update

conservatively over time when it is not quite sure of the response.

For negative ones, we crop out a set of samples around Xprev in

four directions (up, down, left, right), which do not overlap with

Xprev .
{
X t−1

sup

}
denotes valid support vectors inherited from previ-

ously trained classifiers. This prevents the decision boundary from

varying too abruptly to lead to drifting problem. Then we accumu-

late these samples up to B frames and send them as shared training

data to update both classifiers.

4. EXPERIMENTS AND RESULTS

We implemented our tracker in MATLAB and tested it on several

challenging image sequences, one from [7] and three from our own

dataset. These challenges include partial occlusion, pose change,

illumination variation and background clutter. The color feature used

here is 27 (3× 3× 3) dimension RGB histogram; the HOG feature

is computed with 9 orientation bins. For each individual feature, the

histogram intersection kernel [17] is computed due to its simplicity

and robustness. For our MKL classifier, we fix C = 100, λ = 0.1
and the parameter B is 5. The number of sampling particles is all

set to 500 in this study. For simplification, we denote our fragment-

based online multiple kernel learning method by FMKL.

4.1. The effectiveness of our FMKL tracking method

Adaptive weight kernel vs Average kernel: We note that our FMK-

L method learns adaptive weights for each fragment on the fly, in

order to enhance the discriminative power of the tracker. To demon-

strate its effectiveness, we compare it with the method using average

kernel that assigns equal weights to different fragments (both meth-

ods only use color histogram as feature in this experiment). Fig. 2

(a) Screenshots of tracking results on “Woman” sequence.

(b) Some examples that are cropped out to visualize the weights of patches.

Fig. 2. Comparison between adaptive weights kernel (red box) and

average kernel (blue box) using “Woman” sequence.

shows some representative tracking results on ”Woman” sequence.

From Fig. 2 (a) we can see that the FMKL method performs better

than the method using average kernel. Fig. 2 (b) shows the discrimi-

native power of multiple fragments by visualizing their weights. The

deeper green color of one patch is, the more it contributes to the over-

all discriminative power. It demonstrates that our FMKL method is

able to identify important patches during the tracking process, there-

by accurately estimating the location of the tracked target. In con-

trast, the method using average kernel treats each fragment equally.

Thus, it may confuse the tracker especially when occlusion occurs

(e.g., Fig. 2 #0130) and cause tracking drift.

The effectiveness of our cues combination strategy: Fig. 3 illus-

trates the effectiveness of our cues combination strategy (presented

in Section 3.2) by using “Human” sequence. We have the following

two observations: (1) the two cues FMKL method using our cues

combination strategy performs better than the FMKL method using

individual features since our cues combination strategy is able to ad-

just the weights of individual cues according to their performance

(Fig. 3 (c)). RGB feature weighs more when there is obvious dif-

ference between the target and background while HOG feature that

characterize shape information is more discriminative when back-

ground is of similar color to the target; (2) we also use MKL to

directly fuse two independent features by using the kernel alignment

strategy [16]. However, it does not work well (as shown in Fig. 3

(b) and (c)). We note that it is because the kernel alignment strategy

is not suitable for the tracking problem. This also demonstrates the

effectiveness of our cues combination strategy.

4.2. Comparison with state-of-the-art methods

The proposed method is compared with some state-of-the-art meth-

ods, including IVT [2], FragTrack [7], MIL [4], VTD [18] and

PN [5]. We only give representative results here due to space lim-

itation and more results are available on the website http://

www.youtube.com/watch?v=U9FZc0B3lpE&feature=

youtu.be. The qualitative and quantitative tracking results are

respectively shown in Fig. 4 and Table 1. From the tracking results,

we can see the proposed method performs favorably against state-

of-the-art methods. In the first row of Fig. 4, a woman undergoes

long-time partial occlusion and small pose variation. Our method

could successfully handle these challenges because it picks out more

informative patches and makes full use of them to discriminate the

target from background. The PN tracker is able to re-acquire the

target when the target object reappears after occlusion. However,

other methods lock on a car of similar color to the woman’s trousers.

In the ”Human” sequence, most of methods fail to track the man

when he is occluded by a board. Though PN tracker can re-acquire
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(a) Screenshots of tracking results on “Human” sequence.
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(b) Quantitative Comparison (c) Adaptive weights of cues

Fig. 3. The effectiveness of our cues combination strategy. This fig-

ure demonstrates the performance of the proposed FMKL method

and cues combination strategy. Our tracking framework (pre-

sented in Section 3) is compared with FMKL methods using in-

diviual features (FMKL(HOG) and FMKL(Color)) and a FMKL

method that directly fuse HOG and RGB features (denoted as FMK-

L(HOG+Color)).

the target after the he passes the board, it drifts to a woman of sim-

ilar color clothes to the man. In the third row, the Frag tracker, PN

tracker and ours can keep track of the target attributed to the handle

of partial occlusion. While others fail when large occlusion occurs.

In the ”Bolt” sequence, most of methods fail to track the player

which is of much pose variation and background clutter. However,

our tracker is able to track the target because it is able to pick out the

most informative and discriminative patches. The optimized match-

ing scheme of multiple fragments and multiple cues helps locate the

player.

IVT Frag MIL VTD PN Ours

Woman 167.5 138.1 122.4 136.6 9.0 3.2

Human 191.0 211.3 174.5 182.7 - 4.1

Girl 44.2 3.2 83.5 53.0 7.0 2.5

Bolt 193.5 62.2 379.3 44.7 - 4.6

Table 1. Average center error (in pixels) with the best results shown

in red fonts.

5. CONCLUSIONS

In this paper, we propose a novel fragment-based tracking frame-

work using online multiple kernel learning (MKL) method. An on-

line MKL for tracking is implemented by considering temporal con-

tinuity. The proposed tracker adaptively integrate the discriminative

power of multiple fragments of the object. In addition, for better ro-

bustness we combine two kinds of independent features to comple-

mentarily represent the patches. Experiments on several challeng-

ing image sequences show that our proposed tracking framework

achieves favorable performance.
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